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Abstract— This paper describes the biological principles un-
derlying a recently proposed optimization technique, Selective
Evolutionary Generation Systems (SEGS), and concludes a
novel, fundamental result about the process of evolution in
Nature. A systems-theoretic framework from the emerging field
of self-reproducing systems is utilized in this work to illustrate
the parallels between biological processes and SEGS. The SEGS
technique is useful for tackling a generalization of the standard
global optimization problem; the generalization depends on a
parameter referred to as the level of selectivity, which restores
traditional optimization when the parameter equals infinity. The
SEGS technique has been shown to produce responsiveness
efficiently, and to also be a generalization of both the canonical
genetic algorithm with fitness proportional selection and the
(1+1) evolutionary strategy. This paper explains how the SEGS
technique models biological responsiveness and search, and
the result is a Markov chain Monte Carlo method that has
connections with statistical mechanics. The implication of the
analysis is that natural evolution is an optimally efficient search
process under certain technical conditions, which are often
satisfied in Nature.

I. I NTRODUCTION

A. Background and Motivation

T HE technique of Selective Evolutionary Generation
Systems (SEGS) [1] was proposed in response to the

problem of efficiently designing an agent’s behavior from
a search space of possible actions such that the designed
behavior is “good” and also responsive to changes in what
constitutes good behavior. The concepts of behavior design,
efficiency, goodness and responsiveness are defined precisely
in the following section. Reference [1] emphasized an opti-
mization version of this problem.

An alternative biological formulation of this problem is
the efficient determination of a viable species from a search
space of possible organisms such that the species is fit and
adapts to variations in its fitness landscape. This problem
interpretation suggests evolution; however, ‘Darwinian evo-
lution may appear inefficient’ [2]. For optimization, Nature-
based approaches may involve reinforcement learning [3] and
simulated annealing [4], both of which are off-line and non-
responsive. Techniques inspired by evolution (e.g., genetic
algorithms [5], evolutionary strategies [6], and variations
of these two) have the following features: 1) [7] notes
that the use of ‘the Darwinian principle does not guarantee
successful optimization,’ 2) [8] states that evolution opti-
mization theories (on which these techniques are based)
are an attempt to understand the diversity of life rather
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than demonstrate that organisms optimize, 3) [9] opines that
‘searching for peaks depicts evolution as a slowly advancing,
tedious, uncertain process,’ and 4) evolutionary computation
for dynamic fitness landscapes is a relatively new area of
study (for an overview, see [10]).

This paper shows that one possible rationale for evolution
in Nature is to solve exactly the biological problem above.
The purpose of this paper is to emphasize the biological
parallels of SEGS and describe the process using a systems-
theoretic abstraction, rather than fully detail the SEGS opti-
mization technique; full proofs and comparative performance
results are available in [1]. Since the canonical genetic
algorithm with fitness proportional selection and the (1+1)
evolutionary strategy are particular cases [1] of the SEGS
technique, these approaches share some biological parallels.
SEGS is linked [1] to a Markov chain Monte Carlo (MCMC)
[11] method with known connections to statistical mechanics;
here, it is indicated that this MCMC method is optimal
with respect to an efficient search criterion. The implication
and chief novel claim of this paper is that evolution is an
optimally efficient search process under certain technical
conditions.

B. Problem Definition

Let X be a search space, the set of genotypes [12]. The
problem of behavior designseeks 1) a probability density
function (referred to as thebehavior) φX : X → R

+ that
accomplishes specified objectives, and 2) dynamic transition
laws that cause the variablex to be distributed according to
φX, i.e., to exhibit the behavior specified byφX.

Let z : X → Z be an unknown, computable, and possibly
changing function that we are interested in. Here,Z is a
metric space, the set of phenotypes [12]. Suppose that we are
given an elementzdes in the image ofz, and we wish to find
x∈X such thatz(x) = zdes, or such that||z(x)−zdes|| is small.
Formally, we want to design a behaviorφX that achieves a
known expected valueY, i.e., EφX [||z(x)− zdes||] = Y, and
we refer to this expectation asgoodness. Let y(x) = ||z(x)−
zdes||.

We also desire the behaviorφX to be responsive to
perturbations inz, i.e., ∂φX

∂z 6= 0.

Let f : Z → R
+. We allow the behavior design method

to employ a real-valued, positive fitness functionF : X →
R

+ : x 7→ F(x) = ( f ◦ z)(x) = f (z(x)). The scheme to find
φX should beefficient in that it trades off prior information
aboutX for search effort savings as quickly as possible.



C. Related Literature

The SEGS technique arose out of studies of biologically-
inspired self-reproducing systems, a field resulting from the
work of John von Neumann [13]. A comprehensive overview
of self-replication is documented in [14]–[16].

Biological responsiveness was first examined as resilience
in the seminal work [17], and a recent survey of the many
definitions of resilience in the literature is available in [18].
There are numerous instances of autonomous robustness as
well as resilience to small and large environment fluctuations
in complex natural systems. Examples include physiological
regulation in multi-cellular organisms [19], [20]; group regu-
lation in colonies of social insects [21]–[23]; the evolution of
species through adaptation and natural selection [24]–[26];
and the rebounding of complex systems from earthquakes,
tsunamis, hurricanes, asteroid strikes, etc. [27], [28].

Reference [29] on rational behavior, an important SEGS
principle, sought to explain a remarkable property of the
collectives that appeared in nature. These collectives, which
had different fractions of professions (as in beehives for
example), maintained an appropriate fractional distribution
among the various social functions even if one of the castes
was removed. Using fractional interactions, the theory exam-
ines the behavior of a collective and identifies the properties
of systems of many elements. This is still an important topic;
recent articles on the subject now incorporate evolution and
natural selection [30], [31].

D. Paper Outline

The remainder of this paper is as follows. Section II
explains the biological relationships that are embodied in
the theoretical framework of SEGS. Section III describes the
physical and biological processes contained in the theory that
SEGS is based on. Section IV highlights the biology connec-
tions of the SEGS scheme itself. Section V highlights the
physics connections of the MCMC method that is equivalent
to the SEGS scheme. Section VI describes the final result on
evolution that is implied using a SEGS model.

II. T HE BIOLOGICAL PARALLELS IN SEGS DEFINITIONS

In behavior design, acell is any element of the domain of
a reward function, and aresourceis any input that facilitates
a transition between cells. Cells may also be referred to as
states or candidate optimizers. A cell utilizes a resource to
reproduceand generate an offspring, i.e., transition to another
cell. Furthermore, it is possible that resources are chosen
probabilistically.

Definition 1: An evolutionary generation systemis a
quadrupleE = (X,R,P,G), where

• X is a set of n cells, X = {x1,x2, . . . ,xn};
• R is a set of m resources, R= {r1, r2, . . . , rm}, that can

be utilized for cell reproduction;
• P : R→ (0,1] is aprobability mass function on R, given

by P(r i) = Pr[R = r i ] = pi ,
m
∑

k=1
pk = 1; and

• G : X ×R→ X is a generation functionthat maps a
parent cell and a resource into a descendant cell.

Use of the adjectiveevolutionaryhere is consistent with biol-
ogy [12], where evolution is defined as the genetic changes
in a biological population that occur every generation due to
genetic changes from parent to descendant.

Let
(

rµ
)

=
(

r1, r2, . . . , rµ
)

be a sequence ofµ resources
from R. SEGS theory defines the notation

G
(

x,
(

rµ
))

:= G(. . .G(G(x, r1), r2) . . . , rµ) (1)

to denote the cell produced byx using sequence
(

rµ
)

.
Definition 2: The set of cells,X, of the evolutionary

generation systemE = (X,R,P,G) is reachablethrough G
andR if, for all pairs (x1,x2) ∈ X2, there existsk∈ N and a
sequence(rk) ∈ R such thatx2 = G(x1,(rk)).

In Definition 1, the restriction that the offspring of a cell
be itself a cell implies that the set of cells isclosed [32],
since there is no feasible transition to any element outside
X. If the set of cells is also reachable, thenX is said to be
irreducible [32].

SEGS theory associates each cell with a non-zero, positive
performance index that is a measure of the fitness of the cell,
F : X → R

+. The notion of fitness facilitates the following
novel mathematical definition of selection.

Definition 3: Given a cell set,X, and a fitness function
F : X →R

+, let Select: X×X×N→X be a random function
such that ifx1 ∈ X andx2 ∈ X are any two cells, andN ∈ N

is the level of selectivity, then

Select(x1,x2,N) =







x1 with probability F(x1)
N

F(x1)
N+F(x2)

N ,

x2 with probability F(x2)
N

F(x1)
N+F(x2)

N .

(2)
Definition 4: A selective evolutionary generation system

is a quintuple
Γ = (X,R,P,G,F), where

• (X,R,P,G) is an evolutionary generation system;
• F : X → R

+ is a function that evaluates cell fitness;
• the set of cells,X, is reachable throughG andR; and
• the dynamics of the system are given by

X (t +1) = Select(X (t),G(X (t),R(t)),N). (3)
In (3), X (t) denotes the realization of a random cell variable
at timet, R(t) denotes the realization of a random resource
variable at timet, G(X (t),R(t)) denotes the offspring of the
realized random cell utilizing the realized random resource
at timet, andX (0) has a known probability mass function.

Also in (3), the probability of a cell realization at some
future time given the present cell realization is conditionally
independent of the past time history of cell realizations. Thus,
the dynamics of a SEGS form a discrete-time homogeneous
Markov chain [11]. This property is useful for the SEGS
analysis conducted in [1].

The two central tenets of Darwin’s theory of evolution
[12] are embodied in Definition 4.

1) Undirected variationvia the generation function.
2) Natural selectionvia theSelectfunction.

TheSelectfunction has a number of interesting properties
[1], including:



• For all N,

Pr[Select(x1,x2,N) = x1]

Pr[Select(x1,x2,N) = x2]
=

(

F(x1)

F(x2)

)N

. (4)

That is, the ratio of the probabilities of selecting any two
cells is equal to the ratio of their respective fitnesses
raised to the powerN. This property is calledlocal
rationality.

The level of selectivity,N, has a biological interpretation
as well. Suppose that the fitness of a cell is measured by the
total number of descendants produced overk generations,k≥
1. This prolificity is typically calledfuture reproductive value
or fecundity [12]. When a colony is initiated by two self-
reproducing progenitorsx1 andx2, the ratio of the descendant
population fractions afterk generations equals the ratio of the
respective future reproductive values,

(

F(x1)

F(x2)

)

. (5)

After k generations, the ratio of the probability of choosing,
by random sampling, a descendant ofx1 to the probability
of choosing a descendant ofx2 is equal to the ratio of
the descendant population fractions (5). Correspondingly, the
ratio of the probability of selectingx1 at the initial time to the
probability of selectingx2 at the initial time, (4), is identical
to the ratio of the respective prolificities, (5), withN = 1.

Now consider the following sequence of operations.

1) Initiate a colony with two self-reproducing progenitors
x1 and x2, and let descendants be produced fork
generations.

2) Extract a sample from the resulting population. Use the
sample to initiate a second colony, and let descendants
be produced fork generations.

3) Iterate the sample and colony initiation procedure until
an Nth colony is produced.

Then, the ratio of the probability of selecting a descendant
of x1 to the probability of selecting a descendant ofx2 using
this multi-step process becomes

(

F(x1)

F(x2)

)(

F(x1)

F(x2)

)

. . .

(

F(x1)

F(x2)

)

=

(

F(x1)

F(x2)

)N

, (6)

and it is now clear thatN represents the number of se-
lections that are made, assuming ak-generation fecundity
interpretation of fitness. A recent, well-publicized, biological
experiment that fits this multi-selection model is [33].

III. T HE PHYSICAL AND BIOLOGICAL PARALLELS

UNDERLYING SEGS EFFICIENCY AND RESPONSIVENESS

A. Efficiency

Let (X,P) be a time-homogeneous, irreducible, ergodic
Markov chain, whereX = {x1,x2, . . . ,xn} is the set of states
of a Markov process,P ∈ R

n×n is the matrix of transition
probabilities for these states, andn < ∞ is the number of
states. Assume that the initial probability distribution over
the states is known, i.e., we are given ann-vector p(0)
having elementspi(0) = Pr[X (0) = xi ] for all xi ∈ X, where

X (0) denotes the state realization at time 0, and we have
n
∑

i=1
pi(0) = 1. Since we have assumed that the states inX are

ergodic and irreducible, they admit a unique stationary prob-
ability distribution [11], [32]. Letπ =

[

π1 π2 . . . πn
]

be
the row vector of these stationary probabilities, satisfying the

constraintsπi > 0 ∀i, and
n
∑

i=1
πi = 1. Let F : X → R

+ be a

positive fitness function. LetN ∈ N be a natural number.
Definition 5: The time-homogeneous, irreducible, ergodic

Markov chain(X,P) is said tobehave rationallywith respect
to fitnessF with level N if

πi

π j
=

(

F (xi)

F (x j)

)N

, 1≤ i ≤ n, 1≤ j ≤ n. (7)

This is a definition ofglobal rationality.
Each stationary probability can also be explicitly charac-

terized to ensure Markov chain rational behavior.
Theorem 1:The time-homogeneous, irreducible, ergodic

Markov chain (X,P) behaves rationally with respect to
fitnessF with level N if and only if

πi =
F (xi)

N

n
∑

k=1
F (xk)

N
, 1≤ i ≤ n. (8)

Proof: See [1].
Here, we have a more general, probabilistic version of the
optimization of an objective function. A Markov chain that
behaves rationally selects the state of maximum fitness with
the highest stationary probability, and, in the limit asN
approaches∞, this probability is 1. The problem and solution
then revert to one of standard optimization. Remarkably, ra-
tional behavior in Markov chains is the result of a subsidiary
optimization.

Theorem 2:The stationary distributionπ of the time-
homogeneous, irreducible, ergodic Markov chain(X,P) that
behaves rationally with respect to fitnessF with level N
solves the optimization problem

min
π1,...,πn

U(π) = −
n

∑
i=1

ϕi ln(πi), (9)

subject to the constraints
n
∑

i=1
πi = 1, andπi > 0, ∀i, utilizing

the fitness distribution

ϕi =
F (xi)

N

n
∑

k=1
F (xk)

N
, 1≤ i ≤ n. (10)

Proof: See [1].
Furthermore, Theorem 2 states that at the optimum, the
stationary distribution agrees with the fitness distribution, i.e.,
π = ϕ .

Using the notion of entropy, we can interpret (9) as follows.
First, we recognize the term− ln(πi) as the information
content of statexi [34]. Hence, the right hand side of (9)
represents the “fitness-expectation of information.” Moreover,
we have the following.

Corollary 1: The time-homogeneous, irreducible, ergodic
Markov chain (X,P) behaves rationally with respect to
fitnessF with level N if and only if its stationary probability



distribution minimizes the fitness-expectation of information.
At the optimum, this fitness-expectation of information is the
entropy of the fitness distribution, i.e.,

U∗ = H(ϕ) = −
n

∑
i=1

ϕi ln(ϕi). (11)

Entropy maximization is important for search: ‘in making
inferences on the basis of partial information, the maximum
entropy probability distribution subject to whatever is known
is the only unbiased assignment we can make; to use any
other would amount to arbitrary assumption of information
which by hypothesis we do not have’ [35]. The relationship
between entropy maximization and optimal search is clarified
in [36]. The optimal search policy for cells with exponential
“sizes” ‘appears very much like an irreversible process in
thermodynamics, in which an initially non-equilibrium state
relaxes in the the equilibrium state of maximum entropy. But
now it is only our state of knowledge that relaxes to the
“equilibrium” condition of maximum uncertainty’ [36].

Applying the results from [36] and [35], an exponential
normalized fitness function relates rational behavior, entropy
and optimal search through the following theorem.

Theorem 3:Let y : X → R be an unknown function for
which an expected value, E[y(x)], is a known numberY. The
normalized fitness

ϕi = αe−βy(xi), 1≤ i ≤ n, (12)

and the stationary distributionπ of the time-homogeneous,
irreducible, ergodic Markov chain(X,P) that behaves ra-
tionally with respect to fitnessF with level N solves the
optimization problem

max
ϕ∈Dn

min
π∈Dn

U(ϕ,π) = −
n

∑
i=1

ϕi ln(πi), (13)

subject to the constraint

E[y(x)] = Y. (14)
Proof: See [1].

Hence, a scheme with underlying Markov chain dynamics
that behave rationally also maximizes the entropy of the
fitness distribution when the fitness function is exponential.
The implication is that a fitness function like

F(xi) = e−((z(xi)−zdes)
2) (15)

together with a scheme that makes use of rational behavior
(e.g., SEGS, see Section IV) guarantees “good” behaviors
efficiently.

Exponential fitness functions arise in nature if one consid-
ers fecundity as the measure of fitness (recall that population
growth is an exponential function). Other examples include
the beak depth of the Galapagos finches [37] and instances
whendirectional selection[12] is prevalent.

B. Responsiveness

Responsiveness in Markov chain rational behavior theory
is defined as the sensitivity of the stationary distributionto
changes in fitness.

Definition 6: For any time-homogeneous, irreducible, er-
godic Markov chain(X,P) with a positive fitness function
for all the states inX, the extrinsic resilienceof statexi to
changes in the fitness of statex j , j 6= i, is defined as

ρi j =
∂πi

∂F(x j)
, (16)

and theintrinsic resilienceof statexi to changes in its own
fitness is taken to be

ρii =
∂πi

∂F(xi)
. (17)

We say that the Markov chain(X,P) is resilient if ρi j 6= 0
for all i and j.

The level of selectivity has the following asymptotic effect
on resilience.

Theorem 4:For the time-homogeneous, irreducible, er-
godic Markov chain(X,P) that behaves rationally with
respect to fitnessF with level N,

ρi j

∣

∣

∣N=0
j 6=i

= ρii

∣

∣

∣

N=0
= 0, (18)

and

lim
N→∞

j 6=i

ρi j = lim
N→∞

ρii = 0. (19)

Proof: See [1].
As a result of Theorem 4, we have quantification that stan-
dard optimization (N → ∞) is non-resilient. Moreover, recall
that if we assume ak-generation fecundity interpretation of
fitness as in Section II, thenN→∞ also represents an infinite
number of selections made overk generations. There is
much biological evidence to confirm that prolonged selective
breeding yields non-resilient strains [38]–[42].

Resilience is a direct outcome of Markov chain rational
behavior, as stated below.

Theorem 5:The time-homogeneous, irreducible, ergodic
Markov chain(X,P) is resilient if the chain behaves ratio-
nally.

Proof: See [1].

IV. T HE BIOLOGICAL PARALLELS IN THE SEGS SCHEME

Definition 7: Let Γ = (X,R,P,G,F) be a selective evolu-
tionary generation system. Letxi ∈ X andx j ∈ X be any two
cells, andrk ∈ R be a resource. Thedescendancy tensor, δ ,
has elements

δi jk =











1 if x j = G(xi , rk),

1≤ i ≤ n, 1≤ j ≤ n, 1≤ k≤ m,

0 otherwise.

(20)

Hence, the descendancy tensor indicates whether it is possi-
ble to produce cellx j in one step from cellxi , using resource
rk. We can use this tensor to create a matrix that represents
the conditional probability of generatingx j given that the
progenitor isxi , by utilizing the probability of selecting each
available resource and summing over allm resources.



Definition 8: For the SEGSΓ = (X,R,P,G,F), thematrix
of generation probabilities, γ, also called the unselective
matrix of transition probabilities, has elements

γi j = Pr[offspring isx j | progenitor isxi ], (21)

=
m

∑
k=1

δi jk pk, 1≤ i ≤ n, 1≤ j ≤ n. (22)

This matrix is a stochastic matrix.
Recall that a SEGS follows the stochastic Markov process

described by (3). Therefore, we can find a matrix of transition
probabilities to describe the cell-to-cell transitions that occur
as a result of the selection dynamics. For the SEGSΓ =
(X,R,P,G,F), the matrix of transition probabilities, P, has
elements

Pi j =Pr[X (t +1) = x j | X (t) = xi ], (23)

=Pr[Select(xi ,x j ,N) = x j | X (t) = xi ]×

Pr[offspring isx j | progenitor isxi ] (24)

=























1

1+

(

F(xi )
F(xj )

)N γi j , ∀ j 6= i,

γii +
n
∑
j=1
j 6=i

1

1+

(

F(xj )

F(xi )

)N γi j , if j = i.
(25)

Note that the matrix of transition probabilities in (25) is also
a stochastic matrix.

In addition to irreducibility, if we assume that the selection
dynamics of the SEGS is ergodic, then a unique stationary
probability distribution over the set of cells exists.

Theorem 6:For the ergodic SEGSΓ = (X,R,P,G,F),
assume that the matrix of generation probabilities,γ, is sym-
metric. Then the Markov chain representing the stochastic dy-
namics of the ergodic SEGS behaves rationally with fitnessF
and levelN. That is, the row vectorπ =

[

π1 π2 . . . πn
]

,
whereπi satisfies (8), is a left eigenvector ofP, the matrix
of transition probabilities forΓ, with corresponding eigen-
value 1 (i.e.,πP = π). Hence,π is the vector of stationary
probabilities for the SEGS.

Proof: See [1].
As a result of Theorem 5, the stochastic dynamics of the
ergodic SEGS with symmetric matrix of generation proba-
bilities, γ, are resilient. Hence, a SEGS is a computationally
inexpensive on-line technique to achieve these characteristics
because only local decisions between two candidate optimiz-
ers are made at any time. The need to evaluate the fitness of
all elements in the domain of the objective function, or even
in a sub-population of candidate optimizers (as in genetic
algorithms or evolutionary strategies), is avoided.

The symmetry condition on the matrix of generation prob-
abilities, γ, implies that there exists equiprobable forward
and reverse transitions between any pair of cells prior to
the selection process. More specifically, symmetry ofγ is a
requirement that mutations be reversible. This reversibility
requirement is satisfied in biology, and such mutations are
called true back mutations[43], [44].

Theorem 7:For the ergodic SEGSΓ = (X,R,P,G,F),
assume that the matrix of generation probabilities,γ, is sym-
metric. Then the Markov chain representing the stochastic

dynamics of the ergodic SEGS is time-reversible, i.e.,

πiPi j = π jPji , ∀i, j. (26)
Proof: See [1].

As a consequence, the Markov chain representing the stochas-
tic dynamics of the SEGS and its time reversed form are
statistically the same.

The SEGS algorithm has many biological parallels. During
asexual reproduction, an additional cell is generated through
a division of genetic material in a process called mitosis
[12]. Each cell’s genetic identity is parameterized by a
sequence of symbols from a four letter alphabet, its genotype,
while the physical realization of a genotype is known as its
phenotype. Although reproduction occurs through operations
on the genotype, it is the functionality of the phenotype that
determines cell fitness [12]. Hence, it is necessary to account
for the genotype-phenotype mapping when evaluating cell
fitness in a SEGS.

V. THE PHYSICS PARALLELS IN THE SEGS MCMC
METHOD

The SEGS algorithm is an example of a Markov chain
Monte Carlo (MCMC) algorithm. MCMC algorithms are use-
ful for simulating large random fields through sampling, and
are frequently employed in statistical mechanics applications
[11]. MCMC algorithms utilize an irreducible, aperiodic,
time-homogeneous Markov chain such that the stationary
distribution,π, is the target distribution. Since convergence to
the target distribution is easier to check for reversible Markov
chains, these Markov chains are the most frequent case of
MCMC algorithms [11].

A generic formulation is specified by the Hastings algo-
rithm; special cases of the Hastings algorithm include the
Metropolis algorithm, which is used in simulated annealing,
and Barker’s algorithm. The latter algorithm is derived from
Barker’s sampler [45], which computes radial distribution
functions for plasmas over a wide range of temperatures and
densities to calculate macroscopic thermodynamic variables.
In [1], it is shown that the SEGS algorithm and Barker’s
algorithm are the same.

However, we arrived at Barker’s algorithm in a non-
traditional manner, i.e., we did not assume time-reversibility
and begin at Hasting’s algorithm. Instead, modeling Nature,
we started with a self-reproducing process and selected
according to local rationality. The aim was to achieve global
rational behavior, thereby resulting in resilience. A required
assumption was equiprobable forward and reverse transitions
prior to selection, a fact borne out in Nature. This assump-
tion resulted in the SEGS algorithm being time-reversible.
Furthermore, efficient searching suggested exponential fit-
ness functions, which are also documented in Nature. The
combination of an exponential fitness function and a SEGS
algorithm is the Barker sampler.

In light of the connection between rational behavior and
statistical mechanics through entropy, it is perhaps unsurpris-
ing that selective evolutionary generation results in Barker’s
version of an MCMC method.



VI. T HE IMPLICATION

Whereas the Metropolis algorithm is optimal with respect
to asymptotic variance in the class of Hastings algorithms
with fixed candidate-generating matrixQ [11], Barker’s
algorithm is optimal with respect to search efficiency under
the technical conditions specified in Theorem 3.

Since the SEGS technique results in Barker’s algorithm,
efficient search is guaranteed under these same technical
conditions. SEGS is a model for evolutionary processes
that achieve responsive behaviors, and the implication is
that evolution is also optimally search efficient when the
technical conditions hold. As documented in this paper,
the technical conditions (exponential fitness functions, true
back mutations, etc.) have been verified in Nature. Even
intermediate results of this model (rational behavior in col-
lectives, repeated selections corresponding to the level of
selectivity, losses in resilience due to prolonged selection)
are corroborated by examples in Nature.

Lastly, the fact that Nature utilizes sexual reproduction
pairs does not invalidate the above SEGS model and claim.
This is because half of the reproductive pairing can be
viewed as a cell in the model, and the other half can be
viewed as a resource; thus, the set of cells and resources
in the SEGS model have a non-empty intersection. Further,
the protestation that more than one resource is required for
reproduction can also be included in the model without
significant changes; each resource can itself be considered
a set containing the requisite water, nutrients, etc. required
by a cell for reproduction.
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